This page provides you with instructions on how to extract data from HubSpot and load it into Google BigQuery. (If this manual process sounds onerous, check out Stitch, which can do all the heavy lifting for you in just a few clicks.)
What is HubSpot?
HubSpot provides an inbound marketing and sales platform that helps businesses feature content, perform search engine optimization, interact on social media, and see analytics about their content.
What is Google BigQuery?
Google BigQuery is a data warehouse that delivers super-fast results from SQL queries, which it accomplishes using a powerful engine dubbed Dremel. With BigQuery, there's no spinning up (and down) clusters of machines as you work with your data. With that said, it's clear why some claim that BigQuery prioritizes querying over administration. It's super fast, and that's the reason why most folks use it.
Getting data out of HubSpot
HubSpot provides a REST API that lets you get dozens of different kinds of data from the platform. For instance, to get a list of blog topics, you could call GET /blogs/v3/topics
. All of Hubspot's API calls require a parameter that specifies an OAuth Access Token or API Key, and some provide optional parameters that let you tailor the information that HubSpot returns.
Sample HubSpot data
HubSpot's API returns JSON-format data. For example, the output of the topics query might look like this:
{ "objects": [ { "id": 349001328, "portalId": 62515, "name": "api-docs", "slug": "api-docs", "description": "", "created": 1381896200000, "updated": 1381896200000, "deletedAt": 0 }, { "id": 447332568, "portalId": 62515, "name": "Test Topic 20170110160733", "slug": "test-topic-20170110160733", "description": "", "created": 1389388053000, "updated": 1389388053000, "deletedAt": 0 }, { "id": 450113517, "portalId": 62515, "name": "Test", "slug": "test", "description": "", "created": 1389387669000, "updated": 1389387669000, "deletedAt": 0 } ], "message": null, "total": 3, "limit": 1000, "offset": 0 }
Preparing HubSpot data
If you don't already have a data structure in which to store the data you retrieve, you'll have to create a schema for your data tables. Then, for each value in the response, you'll need to identify a predefined datatype (INTEGER, DATETIME, etc.) and build a table that can receive them. HubSpot's documentation should tell you what fields are provided by each endpoint, along with their corresponding datatypes.
Complicating things is the fact that the records retrieved from the source may not always be "flat" – some of the objects may actually be lists. This means you'll likely have to create additional tables to capture the unpredictable cardinality in each record.
Loading data into Google BigQuery
Google offers an overview document that covers loading data into BigQuery. Use the bq
command-line tool, and in particular the bq load
command, to upload data to your datasets and define schema and data type information. You can learn how to use bq
from the Quickstart guide for bq. Iterate through the process as many times as it takes to load all of your tables into BigQuery.
Keeping HubSpot data up to date
At this point you've coded up a script or written a program to get the data you want and successfully moved it into your data warehouse. But how will you load new or updated data? It's not a good idea to replicate all of your data each time you have updated records. That process would be painfully slow and resource-intensive.
Instead, identify key fields that your script can use to bookmark its progression through the data and use to pick up where it left off as it looks for updated data. Auto-incrementing fields such as updated_at or created_at work best for this. When you've built in this functionality, you can set up your script as a cron job or continuous loop to get new data as it appears in HubSpot.
And remember, as with any code, once you write it, you have to maintain it. If HubSpot modifies its API, or the API sends a field with a datatype your code doesn't recognize, you may have to modify the script. If your users want slightly different information, you definitely will have to.
Other data warehouse options
BigQuery is great, but sometimes you need to optimize for different things when you're choosing a data warehouse. Some folks choose to go with Amazon Redshift, PostgreSQL, Snowflake, or Microsoft Azure Synapse Analytics, which are RDBMSes that use similar SQL syntax, or Panoply, which works with Redshift instances. Others choose a data lake, like Amazon S3 or Delta Lake on Databricks. If you're interested in seeing the relevant steps for loading data into one of these platforms, check out To Redshift, To Postgres, To Snowflake, To Panoply, To Azure Synapse Analytics, To S3, and To Delta Lake.
Easier and faster alternatives
If all this sounds a bit overwhelming, don’t be alarmed. If you have all the skills necessary to go through this process, chances are building and maintaining a script like this isn’t a very high-leverage use of your time.
Thankfully, products like Stitch were built to move data from HubSpot to Google BigQuery automatically. With just a few clicks, Stitch starts extracting your HubSpot data, structuring it in a way that's optimized for analysis, and inserting that data into your Google BigQuery data warehouse.